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Abs t r ac t

Several algorithms to calculate a rain-rate profile fro]n a single-frequency air- or space-borne radar
backscatter  ~~rofile  alldagivel~  path-il]tegrated  attenuation have been proposed, The accuracy of
any such algorithm is limited by the ambiguities between the (multiple) exact  solutions, which
depend on the variability of the parameters in the Z--R and k-l? relations used. In this study, we
derive coupled Z-R and LR relations based on the drop-size-distribution. We then show that,
because of the coupling, the relative difference between the multiple mutually ambiguous rain rate
profiles solving the problem must remain acceptably low, provided the available path-integrated
attenuation value is known to within 0.5 d13.



1 Introduction

!l’he problem of estimating the vertical rain profile from measurements obtained using a singlc-
frcquency  active air- or space-borne radar, and subject to a path-integrated attenuation condition,
has already been studied. Indeed, several algorithms have been proposed to find a “solution”, i.e.
a rain rate profile that does the job. (SCC for cxarnplc Kozu and Nakamura  1991, Meneghini
and Nakamura 1990, Weinman et al 1990). IIowcvcr, even under ideal conditions where the
measurements are perfectly calibrated, and in the absence of noise, the problem has multiple
solutions. As is shown in (IIaddad and Im 1993, and Iladdad  et al 1994), this ambiguity is due
to the fact that the parameters governing the classical power laws relating the radar reflectivity
coefl]cient  Z and the radar attenuation cocfflcicnt  k to the rain rate R (or liquid water content
W) depend on the drop-size distribution. For example, in the Z-R relation Z = allb,  empirical
measurements have shown substantial variations in a and b. In fact, Battan, 1973, reports over
70 Z–R relations due to differing drop size distributions. Without a path integration constraint,
rain retrieval requires assumed values for tllc parameters a, b, and the corresponding parameters
in the k–R relation. Each combination of parameters provides a different solution. The path
attenuation constraint provides one additional equation relating the four parameters. Ilowever,
without further constraints, because of the variability of these parameters, substantially different
rain profiles can still be generated that produce the measured power profile and path-integrated
attenuation (} Iaddad  and Irn, 1993).

As was pointed out in (Haddad et al, 1994), this ambiguity can be reduced if improved Z-R
and k–R, relations are used, specifically ones that do account realistically for the inter-dependence
of the various parameters involved. In this paper, wc derive such Z–1? and k–R relations at Ku-
band using realistic scattering models ancl the results of Jameson, 1993 and 1994. Ku-band is of
particular interest because it is the band of the Tropical Rainfall Measuring Mission’s precipitation
radar (Nakamura  et al, 1990). We also derive the exact expressions for the mutually ambiguous
rain profiles, and show that while these multiple solutions are indeed mathematically different, the
difference is relatively small if the path-integrated attenuation is known exactly. When the latter
can be determined only to within a known uncertainty, we also show how our formulas produce
bounds on the relative difference between mutually ambiguous profiles as a function of the relative
error in the path-integrated attenuation.

In section 2, we briefly describe the ambiguity problem, and reproduce the analytic formulas
giving all the mutually ambiguous rain profi]cs that produce the same given radar reflectivity
profile and the same given path-integrated attenuation. The details can be found in (Haddad
et al, 1994). In section 3, we describe our improved Z-R and k-n relations and derive the
corresponding formula for the relative difference Lmtwecn  two mutually ambiguous profiles. In
section 4 wc show how these formulas allows us to conclude that a perfect knowledge of the
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path-integrated attenuation makes the ambiguities acceptably small,

2 The ambiguity formula

In this section, we shall write down the exact formula relating all the mutually ambiguous profiles
to a single “reference” profile, assuming that our data consist of the direct radar reflectivity profile
along with the path-integrated attenuation. To retain some generality, we shall assume that the
“path-integrated attenuation” measurement may contain some error. For example, it may be
obtained from the backscatter  from that portion of the surface that underlies the rain,

Mathematically, the backscattered radar power from range r is proportional to the reflectivity
coefficient Z(r) of the rain at range r, and to the accumulated attenuation from range O to range
r. Calli]lg  k(r) (resp. R(r)) the attenuation coefflciellt  (resp. rain rate) at range r, we begin with
the simple empirical model that Z = aRb and k = oJ?! for some value of the parameters a, b, o
and ~, and that the backscattered power is therefore given by

p(r) = C(r) , aR(r)b10-0”2a-Lr  n(t)Fd’, (1)

where r = O is the range at the top of the cloud, C(r)  represents the range-dependent calibration
constant, which we assume to be known exactly. Since it is highly unlikely that a, 6, a or ,6’ are
ever known exactly, we would like to quantify the efi’ect  on R of an error in these parameters.

To fix the notation, let us call {ao, bo, @o, /?.} our reference set of rain parameters giving rise
to the rain rate profile A&(r), and determine undc,r  what conditions a different set of parameters
{a,, b,, 01, /$} with rain-rate profile Rl(r) can still give rise to the same backscattered power p(r),
and to the same path-integrated attenuation 10 -0.2a for” R(t)~dt

. x, where r, is the distance from
the top of the cloud to the surface, and x denotes the multiplicative error in the path-integrated
attenuation value. This error could be due to an error in the surface backscattering  coefllcient,
in the case where the surface echo is used to estimate the path-integrated attenuation, or to
calibration and modeling errors, in the case where the integrated attenuation is inferred from a
low-frequency passive microwave brightness temperature. The more special case where the exact
path-integrated attenuation is’ assumed known can be obtained from the more general situation
ccmsidered  here by assuming x to be exactly equal to 1.

Thus,  we are given {Ro(r), ao, h, ao,  /3., xo}, and we must determine under what conditions
a different {A-n(r), al, bl, al, ~1, xl}  could still satisfy

(2)

4



along with
~ ~-o.2cq ~Or’ R, (t)~dt . xl = lo-o.2ao  for’ h(t)~d

“ Xo. (3)

At first,  solving equatiol]s  (2)and(3)  sil~lulta~]eously  seenlsquite  dau1lting.  Westart  bynoting  that
the requirement that equations (2) and (3) be satisfied is equivalent to requiring that po(r) = pi(r)
and that

po(r) PI (~)
lo-o.2Jor’ko (+4 —  =  ;o-o.2fo”’k, (t)dt

“ Xo “ xl
(4)

at all ranges r. This observation greatly simplifies the problem of finding the multiple solutions.
lndecd,  we had already shown in (Haddad and Im, 1993) that these last two conditions force our
rainrate RI to satisfy the two equations

ancl

Rl(r) =
~(r)bo/bl  looz~ f,” &(t)  PCIdt

(( )~ A Ih )
(6)

x] ao + 0“210g~,0)o’p’ Jr”’ A’o(T’)bOpl/b]  10°”2* Jr; ‘( f)%d’ dr’ l’P1 “

in (Iladdad  et al, 1994), we then showed how one can solve the system consisting of these
two equations simultaneously. The solution is given by

o.2a0 JO’S RO(OpO~~,  ](r) is the integralwhere A denotes the 2-way path-integrated attcnuatic)n,  A = 10

l(r) = j’RO’(r’)&”(r’)  (*p’ -p0-1)]002W ~1’ ‘(t)eodt dr’, and p is the ratio of the uncertainties inn
the path:integrated  attenuation, p = xo/xl. Thus, in order for RI (r), al, IJl, q and ~1 to produce
the same radar backscatter  and the same path-integrated attenuation as Ro(r),  ao, b, cro  and Do,
tlte parameters al, bl, w and ~1 must satisfy (7), and RI must satisfy (5).
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In order to derive a bound on the relative difference R1/l?O – 1, we rewrite equation (5) as

.

[ )
1 /pl

~ I/o(r) Abe/h 10 -0.25 for CdO(t)%dt

R~(r) = @l

-Q ~lfbl
( ) +  J’m(r’)”

(
–0.2 log(lo)&Yo&(r’)  PoM-o”2~  JO” Crdto(t)dodCrl ao

)

drt

(8)
where wc have called v the expression v = (~1 /bl — /30/ bo)bo. We then perform the integration in

the denominator by parts, then multiply the numerator and denominator by 10 o.2& for cw}b(t)~odt  ,

Our equation becomes

where we have used the abbreviation

/

r  R~’(7-’)
6(7-) =  v —R4J(?J)”1O

0.2& fr; ao~(t)h dtdr,

o  I&(r’)

Similarly, we rewrite the path-integrated-attenuation constraint (7) as

(lo)

(11)

In the appendix, we show that, because the ratio @/b cannot vary significantly, v must remain
small, and therefore c is small enough that it may (and will) be neglected in both equations.
With this simplification, and after we substitute the right-hand-side of (11) for the expression
(CYO/CI1) o (al/ao)ol/b’  in (9), the latter becomes

Equation (13) is the relation between RI and R’. that we will use in section 4 to derive an
upper bound  on the ambiguity. Wc conclude this section by noting that several studies have sought
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to determine realistic values for the parameters a, b, a and ~ from measurements and from more
or less sophisticated scattering models (see, for example, Battan  1973, Doviak and ~rni~ 1984,
l)lbrich  1983). Almost all published values fall within the ranges

200 ~ u <600 (14)

1.2<  b  s1.6 (15)

0 .017<  a <0 .034 (lq

1< p <1.2 (17)

when R. is expressed in mm/hr,  Z in mm6/m 3 , k in dB/km, These constraints are not tight
enough to allow us to infer that all rain-rate profiles RI satisfying (5) and (7) must be close to
Ro. In fact, as is shown in (Haddad ct al, 1994), the relative difference between RO and RI can
easily exceed 100Yo. It is however natural to suspect that the inequalities (14,1 5,16,17) are not
the only constraints governing the values of a, b, a and ~. For example, one knows from Rayleigh
models that the coefficients should be proportional to some power of the mean drop diameter:
since higher rain rates correspond to larger drop sizes, one would suspect that the coef%cients  a
and a must somehow ‘(grow together” at higher rain rates, and similarly %hrink together” at
lower rain rates. One would expect a similar approximate behavior of the ratio b/~.  In the next
section, we shall show that one can indeed derive expressions for the coefficients a, b, a and ~
that exhibit their correlation more readily. When substituted back in equations (5) and (7), these
improved expressions for our parameters will allow us to obtain sufflcient]y tight bounds on the
relative difference between & and RI.

3 Improved coupled radar++rain relations

In (Jameson  1993 and 1994), it was shown that tile attenuation could be paramterized  using
the mass-weighted mean drop diameter ~ and R (or W), i.e. that a single relationship between
k, R and ~ holds for a large class of drop size distributions. Figure 1 reproduces the scatter
diagram of k/R versus ~ from (Jameson,  1994). These values were obtained with R between 1
and 200 mm/hr.  In addition, a I’ drop-size distribution N(D) = NoD~e–A~ mm-lm–3 as in
(Ulbrich,  1983) was assumed, with parameters A and IL varying independently over the intervals
1,6 s A s 4.5 mm-l a n d –1 < p <2 respectively. The parameter NO is then directly related
to R, A and p by the formula No m 141. R . A~’+4~7/I’(p  + 4.67), if we assume that the drops
are falling at their terminal drop velocity v(D) given by v(D) = 3.78D067 m/see. The scattering
calculations were made assuming a frequency of 13.8 GHz and with temperatures between O“C
and 20° C. A T-matrix algorithm was used, with realistically-shaped scatterers. These calculations
produced a large data set consisting of quadruples (R, ~, k, Z) for the different values of A, p and
temperatures above.
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Figure  1 suggests that one could write the k-R relation in the form

although we may have to allow the parameter A to vary over a relatively wide interval. TO minimize
the uncertainty in ~, instead of (18), we look for those exponents 1 and n that will allow us to
write

k = CIDIR’ (19)

with an inequality for the coefficient (?1

that will be valid for all our data points, and for which the ratio C~aX/C~in  is as small as possible.
Using our calculated data {(li?j, ~j, kj, Zj)} (the subscript ~ denoting the ~th data point), we
computed the ratio

l~]axj (kj/(zlR~))
(21)

millj (kj/(~~R~))

for / and n in the intervals [0.5, 1.5], and chose that pair of vlaues for which the ration is minimized.
It, turned out that the optimal values are 1 == 0,86 and n = 1, for which we can write

k = C1~”s6R , 0.0222< C, <0.026 (22)

In the case of the reflectivity coefficient Z, one could  intuitively guess that the ratio Z/R
should be more closely proportional to ~3. Figure  2 shows the computed scatter diagram of Z/R
versus ~, under the same hypotheses listed above. To obtain a Z–R relation with coefficients that
are as tightly constrained as possible, one proceeds as in the case of k, looking for those exponents
1 and n for which the quantity

maXj (Zj/(D~R~))

~niI)j  (Zj/(~~R~))
(23)

is minimized. It turns out in this case that 1 = 2,59 and n = 1, with the resulting relation

z = C2D2’59 R, 203< Cz <470 (24)

Equations (22) and (24) by themselves are still not sufhcient  for our purposes. Indeed, they
both involve the parameter ~. Since ~ and R, are llot independent, we must either “eliminate”
~ between (22) and (24), or make the correlation between ~ and R explicit, then “try to derive
appropriate constraints on the coefficients of tl]e resulting D–R relation. Since the latter option
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produces tighter constraints on the coefficients of the k–R and Z–R relations, we shall choose it
and write ~ = ~R‘. There remains to determine the range of values over which v and 6 can
realistically vary. To that end, note that our k–l? and Z–R relations can now be written as

k = Cfyo’wl+o”s’b  , 0.0222< cl < 0 . 0 2 6 (25)

Z = Czy259111+259b  ,  2 0 3 <  C2 <470 (26)

All we have at our disposal to derive realistic constraints on the D-R coefficients ~ and 6 are the
empirical bounds (14, 15, 16, 17). Indeed, (25) and (26) imply that our new parameters Cl, C2,
~ and 6 are related to the original power-law parameters a, b, a and ~ by

a = C272”59 , (27)

b =  1+2,596, (28)

CY = c~’y0”86  , (29)

~ := 1 + 0.866. (30)

These relations allow us to translate the constraints (14, 15, 16, 17) directly into bounds on ~ and
8, namely

200< C2,n~in~~~~j and C2,.,a.T~~z2“59 < 6 0 0 , (31)

1.2<1 + 2.596~,i,, and 1 + 2.59&oZ  <1.6, (32)
0.017< cl,.,in7HS and G,rn.r%m

0’86 <0.034, (33)

1<1 + 0.866n,in and 1 + o.86&az  <1.2, (34)

from which we conclude that ~ and 6 must remain within the bounds

0 . 9 9 <  y < 1 . 1 , (35)

0 . 0 8 <  6 < 0 . 2 3 . (36)

Since they have been derived from an eclectic assortment of k-l? and Z-R relations obtained by
different scientists using different methods, the bounds in constraints (35) and (36) are undoubtedly
not as sharp as they could be made if one conducted a statistical analysis of carefully collected
representative samples of drop-size distributions. Yet, as we shall see in the following section, these
bounds are sharp enough to allow us to infer a satisfactorily low bound on the ambiguity in the
rain profile determination problem, This is due in no small part to the fact that (25) and (26) make
the interdependence between the parameters of the k–l? relation and those of the 2--R relation
explicit. These correlations between the various a priori unknown coefficients in effect eliminates
large families of combinations of values that would otherwise have allowed significantly different
rain rates to produce the same radar backscatter and the same path-integrated attenuation.
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4 Bounds on the ambiguity

We now re-examine  equations (5) and (7), in light of constraints (25), (26), (35) and (36), in
order to quantitatively estimate the ambiguity, i.e. the difference between any rain-rates RI which
satisfy (5) and (7), and the reference rain-rate .RO, where 1{0 corresponds to a set of reference
values of the rain parameters. In this discussion, we will only need the actual values of aO and
PO. We shall therefore assume that the value&= 0.15 was used to obtain &, which implies that
PO = 1.1185, and we further choose ~0 at the lower end of the range given by equations (18) and
(28), say a. = 0.022, Since it is not reasonable to expect that the RI’s will be close to ~ for
all values large and small, from a fraction of a millimeter pcr hour up to hundreds of rm-n/hr,  we
shall also restrict our attention to rain rate values that fall within a pre-specified  interval

We first assume that the path-integrated attenuation is known exactly, i.e. that
p = 1, and look for bounds on the denominator D(r) of equation (13). With p = 1, D(r) can be
rewritten as

~@)=[l+((M)”-(%w)”)  (’00”2:::(:?’’*’]1’o] ’38)
Over the range of rain rates given by (37), equation (38) implies that

We now restrict our attention to cases where the path-integrated attenuation is large enough to
be significant, say where it is at least 2 dB (with a nominal value of /? = 1.1 and with a between
0.022 and. 0.028, this would correspond to a rain rate between 14 and 17 mm/hr  over 4 km),
In that case, and because ~/b is always greater than 0.74, we know that A~’ /6’ > 1.98, so t}lat

Apl/’]  /(@/bl – 1) S 2. Also, since Jo = 0.15, the exponent v is bounded by –0.09 < v ~ 0.1 .
Together,. these inequalities allow us to rewrite (39) as

[1-2((2)0’-1)]1/”’  <D(r)<  [1+2((%)01-1)]1’”’

Thus, if we are interested in a range of values R,,,~r/R~in  = 4, (13) and (40) imply that

(40)

(41)
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Since, in addition, 0.7 ~ (aO/al)*/o’  ~ 1, we can finally write

R~(r)
o.55Ro(?y”/@’-1 –1 <—–

R~(r)
1 ~1.4R~(r)Ai01-1 –1 (42)

We know that with 60 = 0.15, 1~0//31  – 1 I cannot exceed 0.05. Even when R~.Z = 50 mm/hr,
the term k?o(r)~ol~’-] can therefore not exceed 1,21 . Thus (42) allows us to conclude that the
extreme relative difference between RI and l?. will not exceed 70’%0.

The 70%-estimate was obtained assuming that the path-integrated attenuation could be as
small as 2 dB. AS the attenuation increases, (39) ShOWS that our bound  on the relative error should
decrease. Figure 3 shows the plot of our bound as a function of the attenuation. To produce it,
we assumed that &~Z == 4R~in, an d R~i71  is given by the equation 2~OR~in  dB/km  x 4 km ~
10 loglO(A)  dB. We used the absolute value of the greater of the left-hand-side and the right-hand-
side of (42) (this explains the fact that the curve is not monotone: indeed, as the left-hand-side
increases in absolute value, the right-hand-side decreases), It is clear from the figure that for larger
attenuations, the relative difference between the ambiguous rain rates and our reference rain rate
actually does not exceed 5770.  It is important to keep in mind that this figure represents the
extreme upper bound, not an r.m.s.  value. In order to discuss “average” errors, one would need to
i]ltroduce  specific assumptions on the stochastic behavior of rain rates. This is beyond the scope of
this paper. Figure 3 shows the upper bound on the relative error without any assumptions on the
likelihood of one or another combination of rain parameters beyond the inequalities (25,26,35,36),
or any probabilistic assumptions about the rain rate profile itself.

These bounds were obtained assuming that the rain is convective and may therefore vary
over a relatively wide range ll~in  ~ R < Rn,ax -- incleed,  we assumed that Rmam/.Rmin  = 4. F o r
stratiform rain, when Rmaz H Rmin, (13) reduces to

(43)

which implies that

o.7Ry5 – 1 <  * – 1 ~ R:05 – 1 (44)

for any values of A small or large. l’hese  bounds show that the relative difference must remain
small. Even when RO = 5 mmlhr,  they implies that the extreme relative difference between RI
and R. will not exceed 24 To. Thus, the fact that the rain rate does not vary much in range allows
us to deduce a correspondingly tighter bound on the error.

In the genera] situation, if the path-integrated attenuation is not known exactly, i.e.
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if p is not necessarily equal to 1 anymore, we still have the following version of (42)

0.7 &(r)~
.l<::$ -1<

RO(r)~

(1+ * ( 1 . 1 5 p ”
—

- 1))0’ 9 4

(1+ *(P~ -  1.~5))’’”’4  -1  ( 4 5 )

where m = ~1/h 20.74, IA[ = [@o/& – 1 I <0.05, and where we are again assuming that the rain
rates of interest fall within ll~in < R S Rm.z  with R.t~z/R~i~ = 4. Figure 4 shows a contour plot
of the upper bound for the error as given by (45), as a function of the one-way path-integrated
attenuation and the error in its measurement. As long as the error remains below 0.5 dB, we can
assert that the upper bound for the ambiguity will not exceed 100Yo, If the measurement error
can reach 1 dB, the ambiguity will stay below 100% only if the one-way attenuation is at least
4 d13 -- smaller attenuations will allow greater ambiguity, For measurement errors greater than
1.25 dB, we cannot expect the ambiguities to remain below 100Yo,  regardless of the value of the
path-integrated attenuation.

If we restrict our interest to a narrower range of possible rain rate values, say &.z/R~i.  = 2,
the upper bound on the corresponding ambiguity is given by figure 5. The relative difference is
manifestly smaller. For more nearly uniform rain, i.e. when Rmaz N Rmin, our upper bound for
the relative error is significantly lower. Figure 6 shows a contour plot of the upper bound for
the ambiguity in this case. As long as the measurement error for the path-integrated attenuation
remains below I dB, we can assert that the upper bound for the ambiguity will not exceed 7070.
For a measurement error of less than 0.5 dB, the resulting ambiguity cannot exceed 40%.

Wc conclude this section with an example showing how much worse the ambiguity would be if
we did not use coupled Z--R and k--R relations, For simplicity, we place ourselves in the situation
of the previous paragraph and assume that lb is constant, say & = 20mrn/hr, over the interval
O<?’ <r, = 4 km. Let us also assume that the one-way path-integrated attenuation is known to
within N AO.2 dB, i.e. that 0.9 ~ p ~ 1.1 . In this case, equation (9) becomes

and constraint (11 ) becomes

Nc)te  that by directly integrating both sides of (46), one finds  that

/

Ts log(p)
crl R1(r)eldr  = croR/$r~  —

o o.210g(lo)

(46)

(47)

(48)
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which in turn implies that

10 -0.2 s.”’ CZIR1  (T)pl dr = 10-0.200R5%8
“f (49)

as required. WC use a. = 0,022 and PO = 1.1 as reference values, so that the one-way attenuation
is approximately 2.4 dI1. From figure 6, the corresponding ambiguity using coupled Z–R and k–l?
relations cannot exceed 25$1o.

Jlowever, if we use hl = 1.2, al = 0.034, @l = 1.2 and p = 1.1, equation (46) implies that RI
will be strictly decreasing, from RI(0) ~ 10.4 mnl/hr to RI (4) = 9.6 mrn/hr.  The constraint (47)
in this case states that a l/ao should equal 1.63.2060-11, w}~ich can be easily satisfied if ho = 1,2,
U. = 200 and al = 440, for example. Similarly, if wc use hl = 1.2, al = 0.017, PI == I and p = 0,9,
equation (46) implies that R.l will be strictly increasing, from RI (0) & 37 mm/hr to RI (4) = 40.3
mm/hr, This time, (47) states that al/a. should equal 0.687 “20 b0–1’32, which can be easily satisfied
if ho = 1.4, a. = 345 and al = 300, for example, These simple examples illustrate how, without
the coupling constraints on a, b, a and /?, one can easily construct multiple solutions that differ
from the reference by more than 100%, or over 4 times the maximum difference in the coupled
case.

5 Conclusions

In summary, our use of coupled Z-R and k-h? relations based on the drop-size distribution allows
us to obtain upper bounds on the relative diffcrerlcc between the different rain rate profiles that
can produce the same radar backscatter  profile and the same path-integrated attenuation. At 13.8
Gllz, the results indicate that the ambiguity between the multiple solutions is not prohibitively
large. We considered the problem where the path-integrated attenuation figure available is exact
and contains no error, and the problem where the attenuation was known only approximately. In
each case, we obtained an upper bound on the difference between the mutually ambiguous multiple
solutions to the problem.

When the integrated attenuation is known exactly, in the case of nearly uniform rain our
upper bound for the relative difference between mutually ambiguous profiles is about 2470. In the
case of convective rain, the upper bound decreases as the path-integrated attenuation increases,
For 2 dB of one-way attenuation, the relative difference cannot exceed 70%. For 3 dll of one-way
attenuation, the relative difference cannot exceed 62?f0, If the one-way attenuation is 4 dl? or
greater, the relative difference cannot exceed 57%.

On the other hand, when the path-integrated attenuation is known only approximately, the
bound on the relative difference between the multiple solutions depends on the error in the atten-
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u.ation figure. In the case of nearly uniform rain, if the attenuation error is less that 0.5 d13, we
can conclude that the ambiguity will not exceed 4070, while if the attenuation error can reach 1
cl]], WC. can only conclucle  that the ambiguity will remain below 70%. In the case of convective
rain, for an error smaller than 0,5 dB the ambiguity will remain below 100VO. For an error on
the order of 1 dB, the ambiguity will remain below 10070 only for sufllciently  high attenuation,
namely if the one-way attenuation is at least 4 d13. IIowever if the error in the attenuation figure
available is greater than or equal to 1.25 d13, the upper bound for the ambiguity will be greater
than 100%.

‘1’hese results have two major implications. First, the use of coupled Z-R and k-l? relations
does significantly reduce the ambiguities in the problem of retrieving a rain profile from a single-
frequency radar backscatter profile together with the path-integrated attenuation. It is therefore
important to use this coupling in implementing any inversion algorithms, especially when the

algorithm in question proceeds by ‘(correcting” for the attenuation then inverting the ‘(corrected”
reflcctivities  in two distinct steps. Second, if the error in the attenuation figure that is available
exceeds 1 dB, then the additional constraint afforded by the path-integrated attenuation value
is not sufficient to bring the ambiguity between the multiple rain-rate profile solutions below
100%. Figures 4, 5 and 6 show the detailed dependence of the ambiguity on the error and on the
attenuation figure itself.

Last, the coupled Z-R and k-l? relations which we have derived and used in the derivation
of our bound on the ambiguity were obtained from T-matrix calculations using a very broad
class of modeled drop-size distributions. Some of these drop-size distributions, corresponding to
one or another possibly unrealistic combination of parameters, may never arise in nature. A
careful analysis of a sufficiently large representative sampling of measured drop-size distributions
should allow one to obtain coupled Z-R and k-R relations with sharper bounds on the parameters
involved, thus producing correspondingly tighter bounds on the ambiguity. The implications for
single-frequency radar systems such as TRMM are clear: the problem of obtaining physically
realistic coupled Z-R and k-l? relations with tight bounds on the parameters deserves serious
attention, especially since, as we have shown, onc can then obtain correspondingly tight bounds on
the differences between the mutually ambiguous rain rate profile solutions.
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Figure2:

Figure3:

Irigure4:

Figure  5:

Figure 6:

Figure captions

Scatter diagram of k/R versus ~.

Scatter diagram of Z/R versus ~.

Graph of the upper bound on the ambiguity, in %, as a function of the one-way attenuation
(10 loglo A)/2 when there is no error in the measured attenuation.

Contour plot of the upper bound on the ambiguity, in %, as a function of the one-way
attenuation (10 log lo A)/2 and of the error in the measured attenuation 110 loglO(p) 1, with
Rml~z/R~i~ = 4 .

Contour plot of the upper bound on the ambiguity, in %, as a function of the one-way
attenuation (10 loglo A)/2 and of the error in the measured attenuation I1O IoglO(p)l,  with
Rniax  /&i~ = 2.

Contour plot of the upper bound on the ambiguity, in %, as a function of the one-way
attenuation (10 loglo A)/2 and of the error in the measured attenuation ]10 loglo(p)l, with
Rmaz/Rmin = 1.
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Appendix

l’here are two reasons a priori to suspect
relatively small and may therefore be ignored,

that the term c(r) in equations (9) and (11) is
First, it is proportional to v, which is itself less

than 0.1 . Second, its integrand  is proportional to the derivative of RO wit’h respect to range,
divided by Bo, i.e. to the relative rate of increase of the rain rate with range (in mrn/hr per km)
.— a quantity which can physically not be very large. In fact, when & is constant, its derivative is
zero and therefore c itself is identically zero.

I,ct us now rigorously verify that c is indeed always negligibly small by making sure that it
is significantly smaller than the larger of the other summands  occuring  in the same expression.
Recall that

/

‘  Ii(J’(r’)c(r) = v R4J7’’)”1O
o.2~ Jr; cwRo(t)bit#

o  ll~(r’)
(A,])

with v = (@l/bl – @o/~o)~o. Since Ro(r’)/Ro(0)  cannot be greater than &.Z/R~inl we can
replace R(r’) in the integrand  by R,O(0) . l?mtQ~/ll~im  outside the integral. Similarly, we replace
100’2+ Jr: @~(Wo~~ “in the integrand  by its upper bound value when r’ = O. We then obtain

For our reference value do = 0.15, we already know that v is bounded by Ivl <0.1.
therefore becomes

()Ic(r)l <0.1  * 0 “ ’
Ropzl, for. oh(tyod~  .  log _

“  Ro(oy’lo ‘1 ( )
maz

mtn R nlin

With &l. X/ R,m,i. = 4, this bound becomes

or
Ic(r,)l < 0.16 Ro(0)”A0’ib’

(A,2)

Our inequality

(A.3)

(A.4)

(A.5)

when r = r~, In other words, at the upper extreme, c cannot exceed 16% of the absolute value of
the larger of the other summands occuring  in the same expressions in (9) and (11).
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